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Introduction Workflow Modelling Requirments

Previous qualitative tests with SPECFEM3D Cartesian show that the choice of mesh discretization and volume size affects static
displacements, due to the finitness of the model (Tape et al., 2011). We have done a similar test with SPECFEM3D Globe using a
Mw 7.4 dip-slip point source at a depth of 15 km in a 25° by 25° chunk of the earth and a 1D velocity model with a
homogeneous crust. We compare two different discretizations, ~19.5 km and ~4.9 km grid spacings (fig. C-D). The bulk of the
difference between the two models is observed around the epicenter and along the strike of the fault, with an average of
~33% error in magnitude and ~30 deg in direction.

Initial conditions used in tsunami modeling are commonly simplified due to lack of observations, poor
understanding of the mechanics of tsunami generation, and limitations on computational power and
processing time.

1. Neglecting the Horizontal Advection of Topography

Conventionally, tsunami modellers neglect the contribution of horizontal co-seismic displacements, in the 4 »

absence of landslides. However, it has been shown that this contribution can be significant and might

explain discrepancies in wave height predictions, under certain conditions, such as the combination of a Horizontal Static Displacements Vertical Static Displacements
shallow-dipping thrust fault with relatively steep topography (Tanioka & Satake, 1996; Song et al., 2008;
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The horizontal displacement of a slope can accelerate water in the horizontal directions, therefore Test| N g M Od e I S WIT h I ncrea sed co m p I exrty §§§§§§§§5.5.§§§§§§§§§§§§§§§§§§§5§5§§§§§§§ .
transferring momentum to the ocean water and providing the ocean with kinetic energy, and can be Secessscsssssssssssssessssssssssssssscsss 1P
included in the tsunami modelling stage (Song et al., 2008) e
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Fig. A: Horizontal residual displacements of the seafloor above the source (colors are absolute magnitude). Fig. B: Vertical residual displacements of the seafloor above
the source.

2. Time dependence of deformation

The contribution of time-varying deformation of the seafloor is often neglected in tsunami modeling due to Comparing Different Model Discretizations
the remoteness of the source. However, it has been shown that in the near-field, i.e., within the source
dimension, dynamic displacement of the seafloor can have a significant effect on wave height and arrival 3000 N G e oo oot e e eaoosassses 30.0° N 58 Se0-E3-200- 200

time (Ohmachi et al. 2001; Dutykh and Dias, 2009; Gisler, 2008). 120
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The main shock of the 2011 Tohoku earthquake occurred less than a 100 km from Japan’s east coast, with an
inferred rupture encompassing an area of 200 km wide and 500 km long, thus providing multiple
observations within the source dimension. Extremely large horizontal seafloor displacements, as much as 50 _
m, have been measured near the trench after the 2011 Tohoku tsunami, compared to less than 10 m of N 38.5°N|
maximum vertical displacement (Fujiwara et al., 2011; Sato et al,, 2011; Kido et al., 2011). Horizontal slip : 0 :
values of up to 60 m have also been inferred at shallow depth near the trench (Lay et al., 2011).

We propose to use the abundant observations recorded during the 2011 Tohoku-Oki earthquake and Refe rences
tsunami to study the effects of time-varying deformation and the contribution of horizontal seafloor
displacement on tsunami generation. First, we will simulate the earthquake using a kinematic rupture model
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